
KATHOLIEKE

UNIVERSITEIT

LEUVEN

1Secappdev 2010

Sandboxing untrusted code:

policies and mechanisms

Frank Piessens
(Frank.Piessens@cs.kuleuven.be)

mailto:Frank.Piessens@cs.kuleuven.be

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 2

Overview

• Introduction

• Java and .NET Sandboxing

• Runtime monitoring

• Information Flow Control

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Introduction

• The term “software security” can mean many different

things:

1. Techniques to prevent or detect tampering with software

2. Techniques to prevent or detect the introduction of software

vulnerabilities during development

3. Techniques to detect or block attacks that exploit remaining

software vulnerabilities

4. Techniques to limit the damage that malicious or buggy

software could cause

• This talk will focus on (4)

COSIC course 2009 3

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Problem statement

• Many applications or devices can be extended with new

software components at run-time:

– Anything with a general purpose OS

• PC’s, but also PDA’s, cell-phones, set-top boxes

– Anything that supports a scripting language

• Browsers, various kinds of server software

– Anything that supports functionality extensions

• Media players, smartcards, anything with device drivers

• How can one limit the damage that could be done by

such new software components?

• More precisely: how can we enforce security policies

on such software?
COSIC course 2009 4

KATHOLIEKE

UNIVERSITEIT

LEUVEN

5

Terminology and concepts

• A component is a piece of software that is:

– A unit of deployment

– Third party composable

• A system can contain/aggregate multiple components

– Some of these components are trusted more than others

• A system can be extended at runtime with new

components

• We will sometimes refer to the system in which

components are plugged as the framework

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Examples

Framework Components

Operating system Applications

Web mashup HTML iframes

Media player Audio/video codecs

Web browser plugins

Java Virtual Machine Java classes or jar files

.NET Common Language Runtime .NET Assemblies

Hypervisor Virtual Machines

Operating system Device drivers

Eclipse IDE Eclipse plugins

... ...

Secappdev 2010 6

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example policies

• Standard access control

– “The component can only use a well-designated subset of the

functionality of the framework”

• Stateful access control

– “The component can send at most 5 SMS’s”

• Liveness

– “The component should eventually respond to all requests”

• Information flow control

– “The component should not leak any confidential data”

COSIC course 2009 7

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example mechanisms

• Run-time monitoring / interception

– i.e. The Lampson model again (see Access Control session)

– E.g. OS access control, Java stackwalking, ...

• Static analysis

– Try to determine if the code is OK by inspecting it

– E.g. Java bytecode verifier, virus scanners, ...

• Program rewriting / execution stream editing

– Modify the program/execution to make it secure

– E.g. Inlined reference monitors, virtualization, ...

Secappdev 2010 8

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 9

Overview

• Introduction

• Java and .NET Sandboxing

• Runtime monitoring

• Information Flow Control

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

10

Java/.NET: System and components

• The VM (and some of its libraries) are the

framework

• Java Jar files or .NET assemblies are the

components

Resources

VM

Internet

P

Code extension

KATHOLIEKE

UNIVERSITEIT

LEUVEN

11

Java/.NET Sandboxing: overview

• Permissions encapsulate rights to access
resources or perform operations

• A security policy assigns permissions to each
component – the static permissions

• Every resource access or sensitive operation
contains an explicit check that:

– Through stack inspection finds out what components
are active

– Returns silently if all is OK, and throws an exception
otherwise

KATHOLIEKE

UNIVERSITEIT

LEUVEN

12

Permissions

• Permission is a representation of a right to perform
some actions

• Examples:
– FilePermission(name, mode) (wildcards possible)

– NetworkPermission

– WindowPermission

• Permissions have a set semantics, hence one
permission can imply (be a superset of) another one
– E.g. FilePermission(“*”, “read”) implies

FilePermission(“x”,”read”)

• Developers can define new custom permissions

KATHOLIEKE

UNIVERSITEIT

LEUVEN

13

Security Policy

• A security policy assigns permissions to
components

• Typically implemented as a configurable function
that maps evidence to permissions

• Evidence is security-relevant information about
the component:

– Where did it come from?

– Was it digitally signed and if so by whom?

• When loading a component, the VM consults the
security policy and remembers the permissions

KATHOLIEKE

UNIVERSITEIT

LEUVEN

14

Component 1

Component 2

Component 3

Permissions of
component 2

Permissions of
component 3

Permissions of
component 1

.

.

.

Process memory

System
Component All Permissions

Components and their permissions in VM memory

KATHOLIEKE

UNIVERSITEIT

LEUVEN

15

Stack inspection

• Every resource access or sensitive operation exposed

by the platform class library is protected by a

demandPermission(P) call for an appropriate

permission P

• The algorithm implemented by demandPermission() is

based on stack inspection or stack walking

• NOTE: the fact that this is secure strongly depends on

the safety of the programming language

– Why would this not work in C?

KATHOLIEKE

UNIVERSITEIT

LEUVEN

16

Process

C1 C2

C3

C5

C4

C8

C7

C6

Thread

Protection

domains

KATHOLIEKE

UNIVERSITEIT

LEUVEN

17

Stack walking: basic concepts

• Suppose thread T tries to

access a resource

• Basic rule: this access is

allowed if:

– All components on the

call stack have the right

to access the resource

C3

C2

C7

C5

Stack for thread T

Stack grows

down

KATHOLIEKE

UNIVERSITEIT

LEUVEN

18

Stack walk modifiers

• Basic algorithm is too restrictive in some cases

• E.g. Giving a partially trusted component the

right to open marked windows without giving it

the right to open arbitrary windows

• Solution: stack walk modifiers

KATHOLIEKE

UNIVERSITEIT

LEUVEN

19

Stack walk modifiers

• Enable_permission(P):

– Means: don’t check my callers for this permission, I

take full responsibility

– Essential to implement controlled access to

resources for less trusted code

• Disable_permission(P):

– Means: don’t grant me this permission, I don’t need it

– Supports principle of least privilege

KATHOLIEKE

UNIVERSITEIT

LEUVEN

20

Stack walk modifiers: examples

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) fails because PD1 does not have

Permission P1

Stack grows in this direction

KATHOLIEKE

UNIVERSITEIT

LEUVEN

21

Stack walk modifiers: examples

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) succeeds

EnablePermission(P1)

Stack grows in this direction

KATHOLIEKE

UNIVERSITEIT

LEUVEN

22

Stack walk modifiers: examples

PD1 PD3PD2 demandPermission(P2)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P2) fails

DisablePermission(P2)

Stack grows in this direction

KATHOLIEKE

UNIVERSITEIT

LEUVEN

23

The applet window example

showResults()

openMarkedWindow()

openWindow()

showResults()

openMarkedWindow()

openWindow()

enable

WindowPermission

(a) demandPermission fails (b) demandPermission succeeds

class Applet {

void showResults() {

Lib.openMarkedWindow();

...

}

}

class Lib {

void openMarkedWindow() {

// enable WindowPermission

openWindow();

// make sure this window

// is labelled

}

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

24

Security automaton for stack walking

// NOTE: only support for enabling of permissions, atomic permissions,

// and single threading

type StackFrame = <Component,Set<Permission>> // set of enabled perms

Set<Component> components = new Set();

Map<Component,Set<Permission>> perms = new Map(); // static permissions

List<StackFrame> callstack = new List();

// Access checks

void demand(Permission p)

requires demandOK(callstack, p); {}

bool demandOK(List<StackFrame> stack, Permission p) // pure helper function

{ foreach (<cp, ep> in stack) {

if ! (p in perms[cp]) return false;

if (p in ep) return true;

};

return true;

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

25

Security automaton for stack walking
// Enabling a permission

void enable(Permission p)

requires (let <c,ep> = callstack.Top in (p in perms[c]));

{

<c,ep> = callstack.Pop();

ep[p] = true;

callstack.Push(<c, ep>);

}

// calling a function in component c

void call(Component c)

requires (c in components);

{

callstack.Push(<c,{}>);

}

// returning from a function

void return() requires true;

{

callstack.Pop();

}

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 26

Overview

• Introduction

• Java and .NET Sandboxing

• Runtime monitoring

• Information Flow Control

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Runtime Monitoring

• Runtime monitoring is about observing what a

program is doing

– And then react if it does something not allowed by

the security policy

• Key issues:

– What events do you monitor?

– How do you monitor them?

– How do you define the security policy?

– What do you do when the policy is violated?

• We will terminate the program
COSIC course 2009 27

KATHOLIEKE

UNIVERSITEIT

LEUVEN

What events to monitor?

• Granularity:

– Arbitrary (virtual) machine instructions

– Operating system calls

– Method invocations

• Trade-off between:

– Expressivity

– Simplicity and Performance

• Common choice:

– Events = method invocations

28COSIC course 2009

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Abstraction level of events

• Event = API method invocation (from inside

application to platform libraries)

Application

Platform Libraries

Runtime System

Operating System

Abstraction level

API calls

Native calls

Syscalls

29COSIC course 2009

KATHOLIEKE

UNIVERSITEIT

LEUVEN

How to monitor?

• Explicit monitoring

– By changing the virtual machine

• Inlined monitoring

– By program rewriting

COSIC course 2009 30

Program
rewriter

App

Policy

App’

KATHOLIEKE

UNIVERSITEIT

LEUVEN

How to define policies?

• Policies are specified as security automata

– Security relevant events of an application are

transitions from the application into the platform

libraries

– Application basically generates traces of such events

– Policy is an automaton that specifies the set of

acceptable traces, possibly using context info

• Example automaton:

– “no send after read”

31

KATHOLIEKE

UNIVERSITEIT

LEUVEN

The S3MS.NET Runtime Monitor

• Is an enforcement mechanisms for policies that

are safety properties

– Research prototype developed in FP6 project S3MS

– Supports arbitrary security automata as policies

– Enforces these policies by program rewriting

• i.e. By inlining security checks

• Design and implementation:

– Several people at K.U.L: Pieter Philippaerts, Lieven

Desmet and Dries Vanoverberghe

– Other European universities: Trento, KTH, …
Secappdev 2010 32

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Policy language: ConSpec

33

SCOPE Session

SECURITY STATE

int activeConnections = 0;

int maxConnections = 2;

BEFORE System.Net.Sockets.Socket.Connect(System.Net.EndPoint)

PERFORM

activeConnections < maxConnections -> { }

AFTER System.Net.Sockets.Socket.Connect(System.Net.EndPoint)

PERFORM

true -> { activeConnections++; }

(Designed in the European project S3MS)

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Caller vs Callee side inlining

• Callee-side:

– Complete mediation is easy

– Rewrites platform libraries

– Selectively allowing calls based on their origin is
impossible => bad fit with our events

• We use Caller-side inlining

public void ClientMethod(…) {

//Caller-side security checks

int val = SecurityRelevantMethod(…);

// Caller-side security checks

}

public int SecurityRelevantMethod(…){

// Callee-side security checks

//original code

// Callee-side security checks

}

34COSIC course 2009

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Policy decision point

• Policy is represented as a policy decision point

– with a method per SRE

– this method manages the security state, and either

• Returns silently, or

• Throws a Security Exception

35COSIC course 2009

Application DLL Rewriting
Monitored

Application DLL
Policy DLLSecurity

events

Virtual Machine +

Platform API Libraries

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Prototype implementation

• Efficiently enforces flexible security policies on

applications running on the .NET framework

– Both the full framework and the compact framework

– Without modifications to the virtual machine or the

system libraries

• Flexible policies means:

– Stateful (e.g. resource quota)

– History based (e.g. privacy policies)

– Context based (e.g. “only on business hours”)

36

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Architecture of our system

37

Application

Execution

Monitor

Sensitive

Operations

1
.
E

v
e

n
t

4
.
a

 E
v
e

n
t

8
.a

 R
e

s
u

lt

5
.
R

e
s
u

lt

Policy Decision

Point

2. Before_Event

3. Decision

6. After_Event

7. Decision

4
.b

 T
e

rm
in

a
te

8
.b

 T
e

rm
in

a
te Policy State

Service

System

Information

Service

Policy State

Secure

Storage

Service
Policy State

Policy State

Policy State

System State

KATHOLIEKE

UNIVERSITEIT

LEUVEN

38

KATHOLIEKE

UNIVERSITEIT

LEUVEN

39

KATHOLIEKE

UNIVERSITEIT

LEUVEN

40

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Comparison

• Java Security Architecture

– Is slightly more flexible in the places where security

checks can be done

– Is slightly more performant

• An inlining based architecture:

– Supports more expressive policies

– Is more “future-proof” (no hard-wiring of security

checks)

– Closes some known holes in the JSA

Secappdev 2010 41

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Safety properties:

limits of run-time monitoring
• A policy defines a property if it classifies program

executions in bad ones and good ones

– Example: program should not access /etc/passwd

– Counter-example: average response time should be 1 sec

• A policy defines a safety property if bad executions

never become good again

– Example: program should not access /etc/passwd

– Counter-example: program should close all files it opens

• Safety properties are (more or less) the policies

that can be enforced by run-time monitoring

Secappdev 2010 42

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 43

Overview

• Introduction

• Java and .NET Sandboxing

• Runtime monitoring

• Information Flow Control

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Introduction

• Runtime monitoring can only enforce safety

properties

• But some interesting and relevant policies are

not safety properties

• An important example is information flow control

– “Secret data should not leak to public channels”

– “Low integrity data should not influence high-integrity

data”

Secappdev 2010 44

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Non-interference

• A base-line policy (usually too strict – needs

further relaxing) is non-interference:

– Classify the inputs and outputs of a program into

high-security and low-security

– The low-outputs should not “depend on” the high

inputs

– More precisely: there should not exist two executions

with the same low inputs but different high outputs

• This is clearly not a safety property!

• It is not even a property!

Secappdev 2010 45

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Illustration: non-interference

COSIC course 2009 46

P

1 7

7 3

Secure:

Out_low := In_low + 6

Insecure:

Out_low := In_high

Insecure:

if (In_high > 10) {

Out_low := 3;

}

else Out_low := 7

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript
• Modern web applications use client-side scripts for

many purposes:

– Form validation

– Improving interactivity / user experience

– Advertisement loading

– ...

• Malicious scripts can enter a web-page in various ways:

– Cross-site-scripting (XSS)

– Malicious ads

– Man-in-the-middle

– ...

Secappdev 2010 47

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript

Secappdev 2010 48

var text = document.getElementById('email-input').text;

var abc = 0;

if (text.indexOf('abc') != -1)

{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Example: information flow control in

Javascript

Secappdev 2010 49

var text = document.getElementById('email-input').text;

var abc = 0;

if (text.indexOf('abc') != -1)

{ abc = 1 };

var url = 'http://example.com/img.jpg' + '?t=' + escape(text) + abc;

document.getElementById('banner-img').src = url;

HIGH INPUT

LOW OUTPUT

Explicit

flow Implicit

flow

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Enforcing non-interference

• Static, compile-time techniques

– Classify (=type) variables as either high or low

– Forbid:

• Assignments from high expressions to low variables

• Assignments to low variables in “high contexts”

• ...

• Two mature languages:

– Jif: a Java variant

– FlowCaml: an ML variant

• Experience: quite restrictive, labour intensive

– Probably only useful in high-security settings

Secappdev 2010 50

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Enforcing non-interference

• Runtime techniques

– Approximate non-interference with a safety property

– Label all data entering the program with an appropriate

security level

– Propagate these levels throughout the computation

– Block output of high-labeled data to a low output channel

• Several mature and practical systems, but all with

remaining holes

• Some sound systems, but too expensive

Secappdev 2010 51

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Enforcing non-interference

• Alternative runtime technique: secure multi-execution

– Run the program twice: a high and a low copy

– Replace high inputs by default values for the low copy

– Suppress high outputs in the low copy and low outputs in the

high copy

• First fully sound and fully precise mechanism

• But obviously expensive

– Worst-case double the execution time or double the memory

usage

• See: Devriese and Piessens, IEEE Oakland S&P

2010
Secappdev 2010 52

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 53

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Summary

• If we are sandboxing code, it is in principle possible to

enforce more expressive policies than safety properties

– Because we can reason about alternative executions

• Several policies important in practice are not safety

properties

– Non-interference

– Availability

– SLA’s

• But further research is needed towards good

enforcement mechanisms

Secappdev 2010 54

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Secappdev 2010 55

Overview

• Introduction

• Java and .NET Sandboxing

• Runtime monitoring

• Information Flow Control

• Conclusion

KATHOLIEKE

UNIVERSITEIT

LEUVEN

Conclusion

• There is a trend towards making software

systems open and extensible

• This requires additional security mechanisms to

mitigate the risks of loading new code

• The enforcement of safety properties through

runtime monitoring is relatively well-understood

• The enforcement of stronger properties is

ongoing research

Secappdev 2010 56

